- 学习笔记,如有不足之处,欢迎指正。
类定义
import math
import time
import redis
from hashlib import md5
class SimpleHash(object):
def __init__(self, cap, seed):
self.cap = cap
self.seed = seed
def hash(self, value):
ret = 0
for i in range(len(value)):
ret += self.seed * ret + ord(value[i])
return (self.cap - 1) & ret
class BloomFilter(object):
# 随机种子
SEEDS = [543, 460, 171, 876, 796, 607, 650, 81, 837, 545, 591, 946, 846, 521, 913, 636, 878, 735, 414, 372,
344, 324, 223, 180, 327, 891, 798, 933, 493, 293, 836, 10, 6, 544, 924, 849, 438, 41, 862, 648, 338,
465, 562, 693, 979, 52, 763, 103, 387, 374, 349, 94, 384, 680, 574, 480, 307, 580, 71, 535, 300, 53,
481, 519, 644, 219, 686, 236, 424, 326, 244, 212, 909, 202, 951, 56, 812, 901, 926, 250, 507, 739, 371,
63, 584, 154, 7, 284, 617, 332, 472, 140, 605, 262, 355, 526, 647, 923, 199, 518]
def __init__(self, capacity=100000000, error_rate=0.0000001, redis_con=None, key="bloomfilter"):
self.bit_size = math.ceil(capacity * math.log2(math.e) * math.log2(1 / error_rate)) # 所需位数
self.hash_time = math.ceil(math.log1p(2) * self.bit_size / capacity) # 最少hash次数
self.memery = math.ceil(self.bit_size / 8 / 1024 / 1024) # 占用多少M内存
self.block_num = math.ceil(self.memery / 512) # 需要多少个512M的内存块,value的第一个字符必须是ascii码,最多有256个内存块
self.seeds = self.SEEDS[0:self.hash_time]
self.key = key
self.N = 2 ** 31 - 1
self.hash_func = [SimpleHash(self.bit_size, seed) for seed in self.seeds]
self.redis_con = redis_con
def get_key(self, value):
return self.key + str(int(value[0:2], 16) % self.block_num)
def is_contains(self, str_input):
try:
if not str_input:
return False
m5 = md5()
m5.update(str_input)
str_input = m5.hexdigest()
ret = True
name = self.get_key(str_input)
for f in self.hash_func:
loc = f.hash(str_input)
ret = ret & self.redis_con.getbit(name, loc)
return ret
except Exception as e:
raise
def insert(self, str_input):
try:
m5 = md5()
m5.update(str_input)
str_input = m5.hexdigest()
name = self.get_key(str_input)
for f in self.hash_func:
loc = f.hash(str_input)
self.redis_con.setbit(name, loc, 1)
except Exception as e:
raise
Test
if __name__ == '__main__':
bloom_filter_redis_conn_args = {
"host": "127.0.0.1",
"port": "6379",
"db": 0
}
redis_con = redis.StrictRedis(connection_pool=redis.ConnectionPool(**bloom_filter_redis_conn_args))
bloom_filter = BloomFilter(redis_con=redis_con)
start_time = time.time()
for i in range(6100000, 6101000):
bloom_filter.insert(str(i).encode("utf-8"))
print(time.time() - start_time)
print(bloom_filter.is_contains("6100101".encode("utf-8")))
初步结论(本地测试)
- 插入1000条耗时在2-4s之间。
- 插入和查询耗时基本相同。
Redis数据查询
➜ ~ redis-cli --bigkeys -i 0.1 -h 127.0.0.1
# Scanning the entire keyspace to find biggest keys as well as
# average sizes per key type. You can use -i 0.1 to sleep 0.1 sec
# per 100 SCAN commands (not usually needed).
[00.00%] Biggest string found so far 'bloomfilter0' with 419346305 bytes
-------- summary -------
Sampled 1 keys in the keyspace!
Total key length in bytes is 12 (avg len 12.00)
Biggest string found 'bloomfilter0' has 419346305 bytes
1 strings with 419346305 bytes (100.00% of keys, avg size 419346305.00)
0 lists with 0 items (00.00% of keys, avg size 0.00)
0 hashs with 0 fields (00.00% of keys, avg size 0.00)
0 streams with 0 entries (00.00% of keys, avg size 0.00)
0 sets with 0 members (00.00% of keys, avg size 0.00)
0 zsets with 0 members (00.00% of keys, avg size 0.00)
可以看到 bloomfilter0 所占内存为400M左右